Extensions 1→N→G→Q→1 with N=C4 and Q=C22×C7⋊C3

Direct product G=N×Q with N=C4 and Q=C22×C7⋊C3
dρLabelID
C22×C4×C7⋊C3112C2^2xC4xC7:C3336,164

Semidirect products G=N:Q with N=C4 and Q=C22×C7⋊C3
extensionφ:Q→Aut NdρLabelID
C4⋊(C22×C7⋊C3) = C2×D4×C7⋊C3φ: C22×C7⋊C3/C2×C7⋊C3C2 ⊆ Aut C456C4:(C2^2xC7:C3)336,165

Non-split extensions G=N.Q with N=C4 and Q=C22×C7⋊C3
extensionφ:Q→Aut NdρLabelID
C4.1(C22×C7⋊C3) = D8×C7⋊C3φ: C22×C7⋊C3/C2×C7⋊C3C2 ⊆ Aut C4566C4.1(C2^2xC7:C3)336,53
C4.2(C22×C7⋊C3) = SD16×C7⋊C3φ: C22×C7⋊C3/C2×C7⋊C3C2 ⊆ Aut C4566C4.2(C2^2xC7:C3)336,54
C4.3(C22×C7⋊C3) = Q16×C7⋊C3φ: C22×C7⋊C3/C2×C7⋊C3C2 ⊆ Aut C41126C4.3(C2^2xC7:C3)336,55
C4.4(C22×C7⋊C3) = C2×Q8×C7⋊C3φ: C22×C7⋊C3/C2×C7⋊C3C2 ⊆ Aut C4112C4.4(C2^2xC7:C3)336,166
C4.5(C22×C7⋊C3) = C4○D4×C7⋊C3φ: C22×C7⋊C3/C2×C7⋊C3C2 ⊆ Aut C4566C4.5(C2^2xC7:C3)336,167
C4.6(C22×C7⋊C3) = C2×C8×C7⋊C3central extension (φ=1)112C4.6(C2^2xC7:C3)336,51
C4.7(C22×C7⋊C3) = M4(2)×C7⋊C3central extension (φ=1)566C4.7(C2^2xC7:C3)336,52

׿
×
𝔽